Applications of e-Learning in engineering education: A case study
M. Tariq Banday
a,
*, Musavir Ahmed
b
, Tariq R. Jan
c
a
Department of Electronics and Instrumentation Technology, University of Kashmir, Srinagar, 190 006, India
b
Department of Linguistics, University of Kashmir, Srinagar, 190 006, India
c
Department of Statistics, University of Kashmir, Srinagar, 190 006, India
Abstract
Adequate ICT tools that support both traditional and emerging engineering education have been developed, however, their
adoption is not up to the mark in developing countries primarily due to lack of sufficient infrastructural facilities and competent
human resources besides socio-economical, socio-cultural, and linguistic challenges. This paper deliberates upon the
applications of e-learning and its current practice in engineering education. It reports results of a survey conducted to examine
adoption of ICT and e-learning tools in engineering institutions of the state of Jammu and Kashmir. The results are discussed in
light of relevant research to suggest recommendations for improving e-learning implementations in engineering education.
© 2013 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Organizing Committee of TTLC2013.
Keywords: e-Learning; Engineering Education, ICT; Higher Education; Applications of e-Learning; Web Based Training.
1. E-learning in engineering education
Implementation of ICT in engineering education involves use of ICT for delivery of classroom lectures,
demonstration and conduct of laboratory experiments, course and class management and administration. Classroom
teaching is assisted by presentations that contains sufficient material, circuit diagrams, network diagrams, process
diagrams and flowcharts. Softcopies of the books prescribed in the syllabi may be used while delivering the lectures.
While explaining a circuit or program simulation softwareand compilers may be used in classrooms for better
understanding of the lessons. Animations and visualizations can be used to demonstrate the working of a
component, functioning of a circuit or process. ICT equipment like visualizers, or digital still and video cameras can
be interfaced to projectors in absence of visualizers to demonstrate experiments in laboratories to cover entire class
in one go and thus save time which otherwise may require repetition for each group of students of a particular class.
Simulation software, engineering design and evaluation tools, mind-mapping tools e.g. MatLab, Mathematica,
MathCad, Octave, OrCAD, SPICE, AutoCAD, Solid Works, Inspiration, MindManager, etc. can be used in
networked computing laboratory to demonstrate and carryout experiments which otherwise could have not been
carried out in hardware laboratories due to non-availability of relevant or sufficient instruments or component(s) or
* Corresponding author. Tel.: +91-941-954-8922.
E-mail address:sgrmtb@kashmiruniversity.ac.in.
Available online at www.sciencedirect.com
© 2013 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Organizing Committee of TTLC2013.
407 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
due to time constraints. There are numerous such computer based tools that support engineering laboratories for
each branch of engineering. Various experiments in engineering laboratoriesemploy direct or indirect use of
computers as many laboratory equipment are nowadays operated via some computer based interface. E-learning can
further augment engineering education by use of e-resources, online courses, blended learning, lecture management
systems, and other communication and collaboration tools. A typical lecture management system has facilities for
content delivery, e-mail, tasks/exercises, forums, mailing lists, exams, self-assessment, surveys, group work, chat,
calendar, FAQs, wikis, blogs, glossaries, videoconference, notebook, whiteboard, learning paths, student portfolio,
podcast, student tracking, and podcast. In absence of lecture management system Team viewer, MS Lync or other
similar tools may be used to deliver short online lectures, simulations, etc. Such tools often have an online white
board for narrations during the delivery. Other web tools like SkyDrive, MS Office 365 for education, Google Docs,
etc. can be used to work in collaboration on seminar papers, project reports, experimental write-ups, etc. Online
tools and Social Networking websites such as Google Talk, Skype, etc. can be used for AV and text Instructions,
sharing relevant news and notices, etc. A recent study (Banday, 2012) has reported positive impact of the use of
these tools on the learning outcome in some courses of electronics engineering.
2. Current practices of ICT and e-learning in engineering education
Engineering education being based on science and mathematics makes it a significantly different from other
disciplines. These subjects are traditionally difficult to teach online because of the need for laboratories and equation
manipulation. But advances in technology over years has permitted representation of complex structures and objects
bycomputers. In e-learning resources of diverse types are made available to learners for download or for online
study. One such type of resources are digital or digitized content such as lecture notes, tutorials, e-books, etc.
available for download or studying online using some online system such as OpenCourseWare Consortium
(http://www.ocwconsortium.org), and Open University OpenLearn project (http://openlearn.open.ac.uk/). Second
type of online resources are learning objects such as simulations, structured lessons, animations, videos, etc. such as
MERLOT (http://www.merlot.org) and JORUM (http:/s/www.jorum.ac.uk/). The third type is multi-user, dynamic
and interactive learning environments permitting constructive learning, where a learner learns by doing such as
Finesse (Michaelson, 2003) and WiFi Virtual Laboratory (Allison et al., 2008).
Recent research works such as Potkonjak et al. (2010), Jara et al. (2011), Rojko, (2010), and Vivar, (2008) have
shown that several institutions have created their own virtual and remote laboratories to support life-long learning
and autonomous students’ learning activities in various disciplines including electronics and microelectronics,
power electronics and electrical drives, chemistry, physics, and control and automation. Virtual Learning
Environments (VLE) besides supporting online delivery of content also support e-mail, newsgroups, and bulletin
boards. These VLEs evolved into managed learning environments (MLE) that also support notice-boards, chat
rooms, online assessment, whiteboards, and other web tools. Both commercial and open source VLEs and MLEs
such as Moodle(http://moodle.org) (most popular LMS) (Llam, 2011), WebCT/Blackboard
(http://www.blackboard.com), Ilias (http://www.ilias.de), .LRN (http://www.dotlrn.org), Sakai
(http://www.sakaiproject.org/), Claroline (http://www.claroline.net) are used inengineering education. Web enabled
lifelong learning projects such as nQuire (http://www.nquire.org.uk/) and LIFE (http://life-slc.org/research/reports.html) support complementarity of both formal and informal learnings.
Besides creation of Innovative learning technologies, web permits educational institutionsto share their teaching
expertise and learning resources globally. Various initiatives for online laboratories e.g. LabShare
(http://www.labshare.edu.au/home), WebLab-Deusto (https://www.weblab.deusto.es/web), iLab Shared Architecture
(http://icampus.mit.edu/projects/iLabs.shtml), VISIR (Gustavsson et al., 2009), OCELOT (http://ocelot.ow2.org),
LiLa (http: //www.lila-project.org/) have emerged to provide sharing of virtual and remote laboratories among
different universities. With an aim to enhance the quality of engineering education in the India by providing free
online courseware, National Program on Technology Enhanced Learning (NPTEL) (http://nptel.iitm.ac.in/) has been
initiated by leading national engineering institutions of India. Currently, NPTEL provides e-learning through web
and video courses in engineering, science and humanities. Various initiatives such as Khan Academy (http:
//www.khanacademy. org), Coursera(https://www.coursera.org/) and EdX(http://www.edxonline.org) for creating
408 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
free global platforms to develop and deploy web enabled learning resources are running successfully. According to
Manchester Institute of Technology, a co-initiator of EdX, 10,000students have passed a midterm examination to an
online course named “Introductionto Circuits and Electronics” for which 120,000 signups were made in March
2012.
Besides efforts at institutional, national and international levels, individuals are very active in developing
learning objects for engineering education. (Ebner et al., 2002) used web based course management system in
structure concreate and found that it gave students deep insignt into more complex structures of civil engineering.
Haep et al. (2004) who used ICT for student assessment found that ICTs can facilitate the best aspects of assessment
through web-based tests for practice and self-assessment, assessment of group work. Ribeiro et al. (2005) performed
student evaluation of a problem-based learning (PBL) implementation in the postgraduate engineering curriculum
using a qualitative and collaborative design. It was concluded that this approach was very satisfactory as it promoted
the acquisition of knowledge and developed skills and attitudes, such asteamwork and communication skills and
respect for divergent ideas. Cagiltay(2008) studied the relationship between engineering students’ learning styles
and their performance. It was found that assimilators and convergers performed better than the divergers and
accommodators and the performance difference between assimilators and divergers is statistically significant. It was
also found that the learning style theory is a potential tool for guiding the design and improvement of courses and
helping students to improve their individual performance. Smaill (2006) used a web-based tool used for skills
practice and summative assessment in electrical engineering that delivered individualized tasks, marks student
responses, supplies prompt feedback, and logs student activity. It was reported that the software helped instructors
them to manage workloads in spite of rising class sizes and that student learning had been enhanced rather than
compromised. The students found the software easy to use and were of the opinion that it helped them improve their
skills and understanding. (Wen et al., 2006) developed an online group-based cantilever beam pilot application
using low lag audio and interactive three-dimensional models learning environment in solid mechanics course.
Usingthis system learners are capable to manipulate three-dimensional models, change the view point and apply
forces in various locations using a browser. (Ray et al., 2012) developed a Virtual Proteomics Lab that demonstrates
different proteomics techniques, including basic and advanced gel and MS-based protein separation and
identification techniques, bioinformatics tools and molecular docking methods, and their applications in different
biological samples. Zhai et al. (2012) designed electrical online laboratory that enables autonomous, interactive and
collaborative learning of electrical engineering experiments. (Banday, 2012) has identified four groups of
deficiencies in the conventional teaching and learning system followed for engineering education. These are:i)
inadequate student-teacher interaction, ii) complex teaching and learning, iii) loss of synchronization, iv) weak
collaboration and communication, and v) difficult student management. In this study, varied e-learning tools have
beentested to supplement teaching in electronics engineering classrooms and laboratories. The study has shown that
not only learning but also performance of students in end-term examination are amply improved by using e-learning
tools in engineering education. The study further revealed that most of the students believed that the use of learning
tools such as simulations, animations, and virtualized demonstrations in laboratories were more productive than
conventional classroom teaching.
3. Case study
The present study is concerned with examination of adoption of ICT and e-learning at nine institutions of the
state of Jammu and Kashmir offering postgraduate and undergraduate engineering programs in various branches of
engineering. Engineering curriculum in these institutions comprises of four components namely theory courses,
practical courses, seminar on contemporary topic and project work. Teaching and learning, topics of the theory
courses are taught traditional in the classrooms, experiments of practical courses are conducted in the laboratory
using relevant equipment under the supervision of teachers. Students prepare seminar paper under the guidance of
teachers and collaborate in groups to complete assigned project workin the laboratories. Students’ performance is
assessed separately on the basis of score obtained by them in written and practical tests.
409 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
3.1. Methodology
Based on the review of relevant research cited in section 2, two survey instruments were designed. The design of
the instruments went through different stages and pre-tests by 12eminent ICT professionals and educationists who
possessed well-versed knowledge of recent developments in technology and its worldwide application in education.
The survey questioners were redesigned by elimination, reclassification and by inclusion of new factors. The
purpose of first survey instrument was to gather information from faculty members about the existing use of basic
ICT tools in engineering classrooms and laboratories. The second instrument was used to gather information about
the use of web based training tools currently used by the faculty members. Respondents were asked to rate their
current usage of ICT tools (computer based training) and e-learning tools (web based training) using a 5-point rating
Likert scale ranging from 1=Never Used to 5=Extensive Used. The survey used paper-pencil Delphi method to
gather, organize and prioritize dominant factors. Two Delphi rounds were used. In the first round eminent experts
(Delphi panelists) redesigned the survey instrument and in the second round e-mails were send to 80 faculty
members to collect information about existing use of ICT in institutions of the state of Jammu and Kashmir. In total
50 responses were received. After initial analysis 2 responses from faculty members were found to be incomplete
and therefore, were dropped from the analysis bringing the number of responses to be analyzed to 48 with a
minimum of 5 responses from each institute.
The reliability of the survey instruments were measured by Cronbach’s alpha. The instruments had a very high
overall reliability, α=0.7965, and α=0.8053. The alpha coefficients for the sub-scales were also good, exceeding the
minimum threshold of 0.70 recommended in literature, thus indicating good internal consistency. The data was
analyzed with the help of Statistical Products and Service Solutions (SPSS) for calculating mean, standard
deviation, percentage, Cronbach’s alpha, etc.
3.2. Results
Respondents were well established academic members (12.50% professors, 16.67% associate professors, 43.75%
assistant professors and 27.08% lecturers) possessing respectable degrees (37.50% Ph. D holders, 52.08% Master
degree holders and 10.42% were Bachelor degree holders). The professional experience in engineering education
was less than 10 years for about 70% of respondents. More than 60% respondents were less than 40 years of age and
there were more males faculty members than female members. About 40% faculty members were not regular and
were engaged on contractual basis. Twenty five percent (25%) respondents were from electronics and
communication engineering, 16.67% from electric engineering, 14.58% from civil engineering, 10.42% from
mechanical engineering, and remaining were from other branches of engineering. About sixty two percent (62.50%)
respondents were from Kashmir region and remaining 37.50% respondents were from Jammu region.
Table 1. Adoption of ICT (Computer Based Training)
Components
(Computer Based Training)
Responses in Percentage (N=48)
Never
Used
Rarely
Used
Moderately
Used
Substantially
Used
Extensively
Used
1. Classroom Practice:
a) Presentations 22.92 18.75 33.33 14.58 10.42
b) e-books 47.92 22.92 12.50 12.50 4.17
c) Animations 54.17 25.00 12.50 6.25 2.08
d) Visualizations 52.08 18.75 18.75 6.25 4.17
e) Simulations and other tools 39.58 29.17 22.92 6.25 2.08
f) Engineering Software (CAD, CAM, CAE, etc.) 58.33 20.83 14.58 4.17 2.08
g) Demonstration 27.08 20.83 33.33 12.50 6.25
h) Provide e-content to students 12.50 22.92 33.33 18.75 12.50
Group Average 39.32 22.40 22.66 10.16 5.47
2. Laboratory Practice:
a) Visualized demonstrations 56.25 35.42 8.33 0.00 0.00
b) Simulations and other similar tools 6.25 4.17 10.42 33.33 45.83
c) Computer controlled Instruments 2.08 8.33 12.50 20.83 56.25
d) Engineering Software (CAD, CAM, CAE, etc.) 14.58 12.50 16.67 20.83 35.42
e) Virtual Instruments 100.00 0.00 0.00 0.00 0.00
Group Average 35.83 12.08 9.58 15.00 27.50
410 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
Components
(Computer Based Training)
Responses in Percentage (N=48)
Never
Used
Rarely
Used
Moderately
Used
Substantially
Used
Extensively
Used
3. Project Work:
a) Collaboration and communication 43.75 31.25 12.50 8.33 4.17
4. Seminar:
a) Presentations 4.17 4.17 2.08 12.50 77.08
b) e-resources 43.75 22.92 12.50 12.50 8.33
Group Average 23.96 13.54 7.29 12.50 42.71
5. Assessment:
a) Evaluation progress 56.25 33.33 2.08 8.33 0.00
b) Feedback track 75.00 16.67 4.17 2.08 2.08
Group Average 65.63 25.00 3.13 5.21 1.04
6. Management
a) Student record and conduct 68.75 22.92 8.33 0.00 0.00
b) Scheduling 77.08 14.58 8.33 0.00 0.00
Group Average 72.92 18.75 8.33 0.00 0.00
Average 47.53 18.35 10.20 8.57 15.34
Table 1 summarizes group and component-wise current practice of ICT by faculty members in engineering
education. The data is presented as percentage of use (varying from never used to extensively used) of each
component. Individual components of computer based training under examination are grouped in six groups namely
classroom practice, laboratory practice, project work, seminar, assessment and management. The group wise and
overall average use is also summarized. On an average 47.53% faculty never practiced ICT, 18.35% practiced ICT
rarely, 10.20% practiced ICT moderately, 8.57% practiced ICT substantially and 15.34% practiced ICT extensively
intheir teaching. It is clear that presently ICT is not used widely. However,to some extend its usage was moderately
practicedin seminar work, laboratory and classrooms. Usage of ICT for project work, management and assessment
was found to be extremely low. The current usage of ICT in seminar works was about 60% followed by engineering
laboratories where it was about 50% and classrooms where it was about 40%, considering moderate usage as
minimum acceptable standard. Figure 2 shows the present usage of individual components of ICT in engineering
education. Considering moderate usage as minimum acceptable standard, usage ofpresentations in seminar works,
computer controlled instruments and simulations in laboratories was about 90%. The usage of CAM/CAD/CAE
tools, presentations in classrooms and providing of e-content to students was about 70% and 60% respectively.
Further, usage of virtual instruments in laboratories, usage of ICT for scheduling, student record and conduct, and
usage in student assessment was found to be negligible.
Fig.1. Components (CBT) vs. present usage
Table 2 summarizes group and component-wise current practice of e-learning by faculty members in engineering
education. The data is presented as percentage of use (varying from never used to extensively used) of each
component. Individual components of web based training under examination are grouped in six groups namely
LMS, host e-resources, online interaction, collaboration and communication, assessment and encouragement. The
group wise and overall average usage is also summarized. On an average 83.26% faculty never practiced e-learning,
411 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
7.48% practiced e-learning rarely, 7.60% practiced e-learning moderately, 1.18% practiced e-learning substantially
and 0.49% practiced e-learning extensively in their teaching.
Table 2. Adoption of e-learning(Web Based Training)
Components
(Web Based Training)
Responses in Percentage (N=48)
Never
Used
Rarely
Used
Moderately
Used
Substantially
Used
Extensively
Used
1. Use any LMS, e-library, digital library, e-books 100.00 0.00 0.00 0.00 0.00
2. Host e-resources
a) Course material/notes 91.67 6.25 2.08 0.00 0.00
b) Lecture videos or presentations 93.75 4.17 2.08 0.00 0.00
c) Animations 93.75 4.17 2.08 0.00 0.00
d) Visualizations 93.75 4.17 2.08 0.00 0.00
e) Simulation or other similar videos 93.75 4.17 2.08 0.00 0.00
f) Lab demonstration videos 95.83 2.08 2.08 0.00 0.00
g) Other learning object 100.00 0.00 0.00 0.00 0.00
h) Course plan and/or schedule 100.00 0.00 0.00 0.00 0.00
i) Course FAQ 97.92 0.00 2.08 0.00 0.00
Group Average 95.60 2.78 1.62 0.00 0.00
3. Online interactive interaction
a) Video or audio classes 95.83 2.08 2.08 0.00 0.00
b) Virtual laboratory 97.92 2.08 0.00 0.00 0.00
Group Average 96.88 2.08 1.04 0.00 0.00
4. Collaboration & communication with students:
a) Seminar or project 81.25 6.25 12.50 0.00 0.00
b) Asynchronous 50.00 10.42 35.42 2.08 2.08
c) Synchronous 91.67 6.25 2.08 0.00 0.00
d) Social media connect with students 22.92 16.67 41.67 12.50 6.25
e) Student feedback 85.42 6.25 8.33 0.00 0.00
Group Average 66.25 9.17 20.00 2.92 1.67
5. Student assignment and assessment 87.50 8.33 2.08 2.08 0.00
6. Encourage students to:
a) Enrol to courses on websites like Edx, etc. 64.58 31.25 4.17 0.00 0.00
b) Collaborate with each other (off campus) 45.83 35.42 16.67 2.08 0.00
c) Use Internet for searching solutions 10.42 2.08 75.00 6.25 6.25
d) Use online simulations and other tools 79.17 20.83 0.00 0.00 0.00
e) Explore other web tools for learning 66.67 22.92 8.33 2.08 0.00
Group Average 53.33 22.50 20.83 2.08 1.25
Average 83.26 7.48 7.60 1.18 0.49
The results indicate that e-learning is not even used moderately, however, computed figures indicate that faculty
encourages students to use online learning modes and collaborate and communicate with students online to some
extent. No teachers uses any lecture management system as the institutions do not have any lecture management
system in place. E-resources are very rarely uploaded, and onlineinteraction and assessment is almost absent.
Fig.2. Components (WBT) vs. present usage
412 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
Figure 2 shows the present usage of individual component of e-learning. Teachers encourage students to use
Internet for searching solutions to problems, have established a moderate social media connection with students, and
to some extend maintain a moderate asynchronous communication with students. However, teachers neither develop
e-content nor upload course plan or page. They do not use LMS or social media for online delivery or collaboration.
4. Discussions
ICT and e-learning are implemented in engineering institutionsall over the world, however, the breadth and
depth of this implementation differs importantly between nations and across institutions despite its perceived need
and strong desire. These differences are much more in case of e-learning (web based learning) in which not only
diverse types of e-resources are made available but courses are also offered online and constructivist pedagogy can
be applied. ICT and e-learning can be employed to improve efficiency of engineering education whether offered
through traditional (based on positivism) or emerging approaches. Researcher works Pitchianet al. (2002) and
Sarangi(2004) have demonstrated that the required competencies for engineers as identified by ABET
(http://www.abet.org/) are enhanced by the use of e-learning. The surveyed institutions are at a disadvantage not
only because education is imparted using traditional pedagogy but also because ICT and e-learning are not
employed even moderately. E-learning is still in very early stage of adoption. Implementation of e-learning
particularly in developing countries faces diverse challenges (Mehra et al, 2007), (Andersson et al., 2009), (Klamma
et al., 2007) which are multidimensional and heterogeneous (Benchicou et al, 2010). They can be grouped in seven
major categories namely: a)personal or dispositional, b) learning style, c) instructional, d) situational, e)
organizational, f) content suitability, and, g) technological. Further, developing e-learning structures for engineering
education might pose unique challenges if the instructional material is not adequately designed to facilitate learning
at all levels as it has to deal with multiple levels of intelligence.Integration of technology is complex and influenced
byfactors that may not only differfrom institution to institution but may also have different priorities. Therefore, a
thorough study of critical successes factors (CSFs) in light of already recognized factors and known challenges must
be undertaken. This can help the implementers to frame ICT and e-learning policy for engineering education for the
state ofJammu and Kashmir.
Terjemahan
M. Tariq Banday
a,
*, Musavir Ahmed
b
, Tariq R. Jan
c
a
Department of Electronics and Instrumentation Technology, University of Kashmir, Srinagar, 190 006, India
b
Department of Linguistics, University of Kashmir, Srinagar, 190 006, India
c
Department of Statistics, University of Kashmir, Srinagar, 190 006, India
Abstract
Adequate ICT tools that support both traditional and emerging engineering education have been developed, however, their
adoption is not up to the mark in developing countries primarily due to lack of sufficient infrastructural facilities and competent
human resources besides socio-economical, socio-cultural, and linguistic challenges. This paper deliberates upon the
applications of e-learning and its current practice in engineering education. It reports results of a survey conducted to examine
adoption of ICT and e-learning tools in engineering institutions of the state of Jammu and Kashmir. The results are discussed in
light of relevant research to suggest recommendations for improving e-learning implementations in engineering education.
© 2013 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Organizing Committee of TTLC2013.
Keywords: e-Learning; Engineering Education, ICT; Higher Education; Applications of e-Learning; Web Based Training.
1. E-learning in engineering education
Implementation of ICT in engineering education involves use of ICT for delivery of classroom lectures,
demonstration and conduct of laboratory experiments, course and class management and administration. Classroom
teaching is assisted by presentations that contains sufficient material, circuit diagrams, network diagrams, process
diagrams and flowcharts. Softcopies of the books prescribed in the syllabi may be used while delivering the lectures.
While explaining a circuit or program simulation softwareand compilers may be used in classrooms for better
understanding of the lessons. Animations and visualizations can be used to demonstrate the working of a
component, functioning of a circuit or process. ICT equipment like visualizers, or digital still and video cameras can
be interfaced to projectors in absence of visualizers to demonstrate experiments in laboratories to cover entire class
in one go and thus save time which otherwise may require repetition for each group of students of a particular class.
Simulation software, engineering design and evaluation tools, mind-mapping tools e.g. MatLab, Mathematica,
MathCad, Octave, OrCAD, SPICE, AutoCAD, Solid Works, Inspiration, MindManager, etc. can be used in
networked computing laboratory to demonstrate and carryout experiments which otherwise could have not been
carried out in hardware laboratories due to non-availability of relevant or sufficient instruments or component(s) or
* Corresponding author. Tel.: +91-941-954-8922.
E-mail address:sgrmtb@kashmiruniversity.ac.in.
Available online at www.sciencedirect.com
© 2013 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Organizing Committee of TTLC2013.
407 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
due to time constraints. There are numerous such computer based tools that support engineering laboratories for
each branch of engineering. Various experiments in engineering laboratoriesemploy direct or indirect use of
computers as many laboratory equipment are nowadays operated via some computer based interface. E-learning can
further augment engineering education by use of e-resources, online courses, blended learning, lecture management
systems, and other communication and collaboration tools. A typical lecture management system has facilities for
content delivery, e-mail, tasks/exercises, forums, mailing lists, exams, self-assessment, surveys, group work, chat,
calendar, FAQs, wikis, blogs, glossaries, videoconference, notebook, whiteboard, learning paths, student portfolio,
podcast, student tracking, and podcast. In absence of lecture management system Team viewer, MS Lync or other
similar tools may be used to deliver short online lectures, simulations, etc. Such tools often have an online white
board for narrations during the delivery. Other web tools like SkyDrive, MS Office 365 for education, Google Docs,
etc. can be used to work in collaboration on seminar papers, project reports, experimental write-ups, etc. Online
tools and Social Networking websites such as Google Talk, Skype, etc. can be used for AV and text Instructions,
sharing relevant news and notices, etc. A recent study (Banday, 2012) has reported positive impact of the use of
these tools on the learning outcome in some courses of electronics engineering.
2. Current practices of ICT and e-learning in engineering education
Engineering education being based on science and mathematics makes it a significantly different from other
disciplines. These subjects are traditionally difficult to teach online because of the need for laboratories and equation
manipulation. But advances in technology over years has permitted representation of complex structures and objects
bycomputers. In e-learning resources of diverse types are made available to learners for download or for online
study. One such type of resources are digital or digitized content such as lecture notes, tutorials, e-books, etc.
available for download or studying online using some online system such as OpenCourseWare Consortium
(http://www.ocwconsortium.org), and Open University OpenLearn project (http://openlearn.open.ac.uk/). Second
type of online resources are learning objects such as simulations, structured lessons, animations, videos, etc. such as
MERLOT (http://www.merlot.org) and JORUM (http:/s/www.jorum.ac.uk/). The third type is multi-user, dynamic
and interactive learning environments permitting constructive learning, where a learner learns by doing such as
Finesse (Michaelson, 2003) and WiFi Virtual Laboratory (Allison et al., 2008).
Recent research works such as Potkonjak et al. (2010), Jara et al. (2011), Rojko, (2010), and Vivar, (2008) have
shown that several institutions have created their own virtual and remote laboratories to support life-long learning
and autonomous students’ learning activities in various disciplines including electronics and microelectronics,
power electronics and electrical drives, chemistry, physics, and control and automation. Virtual Learning
Environments (VLE) besides supporting online delivery of content also support e-mail, newsgroups, and bulletin
boards. These VLEs evolved into managed learning environments (MLE) that also support notice-boards, chat
rooms, online assessment, whiteboards, and other web tools. Both commercial and open source VLEs and MLEs
such as Moodle(http://moodle.org) (most popular LMS) (Llam, 2011), WebCT/Blackboard
(http://www.blackboard.com), Ilias (http://www.ilias.de), .LRN (http://www.dotlrn.org), Sakai
(http://www.sakaiproject.org/), Claroline (http://www.claroline.net) are used inengineering education. Web enabled
lifelong learning projects such as nQuire (http://www.nquire.org.uk/) and LIFE (http://life-slc.org/research/reports.html) support complementarity of both formal and informal learnings.
Besides creation of Innovative learning technologies, web permits educational institutionsto share their teaching
expertise and learning resources globally. Various initiatives for online laboratories e.g. LabShare
(http://www.labshare.edu.au/home), WebLab-Deusto (https://www.weblab.deusto.es/web), iLab Shared Architecture
(http://icampus.mit.edu/projects/iLabs.shtml), VISIR (Gustavsson et al., 2009), OCELOT (http://ocelot.ow2.org),
LiLa (http: //www.lila-project.org/) have emerged to provide sharing of virtual and remote laboratories among
different universities. With an aim to enhance the quality of engineering education in the India by providing free
online courseware, National Program on Technology Enhanced Learning (NPTEL) (http://nptel.iitm.ac.in/) has been
initiated by leading national engineering institutions of India. Currently, NPTEL provides e-learning through web
and video courses in engineering, science and humanities. Various initiatives such as Khan Academy (http:
//www.khanacademy. org), Coursera(https://www.coursera.org/) and EdX(http://www.edxonline.org) for creating
408 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
free global platforms to develop and deploy web enabled learning resources are running successfully. According to
Manchester Institute of Technology, a co-initiator of EdX, 10,000students have passed a midterm examination to an
online course named “Introductionto Circuits and Electronics” for which 120,000 signups were made in March
2012.
Besides efforts at institutional, national and international levels, individuals are very active in developing
learning objects for engineering education. (Ebner et al., 2002) used web based course management system in
structure concreate and found that it gave students deep insignt into more complex structures of civil engineering.
Haep et al. (2004) who used ICT for student assessment found that ICTs can facilitate the best aspects of assessment
through web-based tests for practice and self-assessment, assessment of group work. Ribeiro et al. (2005) performed
student evaluation of a problem-based learning (PBL) implementation in the postgraduate engineering curriculum
using a qualitative and collaborative design. It was concluded that this approach was very satisfactory as it promoted
the acquisition of knowledge and developed skills and attitudes, such asteamwork and communication skills and
respect for divergent ideas. Cagiltay(2008) studied the relationship between engineering students’ learning styles
and their performance. It was found that assimilators and convergers performed better than the divergers and
accommodators and the performance difference between assimilators and divergers is statistically significant. It was
also found that the learning style theory is a potential tool for guiding the design and improvement of courses and
helping students to improve their individual performance. Smaill (2006) used a web-based tool used for skills
practice and summative assessment in electrical engineering that delivered individualized tasks, marks student
responses, supplies prompt feedback, and logs student activity. It was reported that the software helped instructors
them to manage workloads in spite of rising class sizes and that student learning had been enhanced rather than
compromised. The students found the software easy to use and were of the opinion that it helped them improve their
skills and understanding. (Wen et al., 2006) developed an online group-based cantilever beam pilot application
using low lag audio and interactive three-dimensional models learning environment in solid mechanics course.
Usingthis system learners are capable to manipulate three-dimensional models, change the view point and apply
forces in various locations using a browser. (Ray et al., 2012) developed a Virtual Proteomics Lab that demonstrates
different proteomics techniques, including basic and advanced gel and MS-based protein separation and
identification techniques, bioinformatics tools and molecular docking methods, and their applications in different
biological samples. Zhai et al. (2012) designed electrical online laboratory that enables autonomous, interactive and
collaborative learning of electrical engineering experiments. (Banday, 2012) has identified four groups of
deficiencies in the conventional teaching and learning system followed for engineering education. These are:i)
inadequate student-teacher interaction, ii) complex teaching and learning, iii) loss of synchronization, iv) weak
collaboration and communication, and v) difficult student management. In this study, varied e-learning tools have
beentested to supplement teaching in electronics engineering classrooms and laboratories. The study has shown that
not only learning but also performance of students in end-term examination are amply improved by using e-learning
tools in engineering education. The study further revealed that most of the students believed that the use of learning
tools such as simulations, animations, and virtualized demonstrations in laboratories were more productive than
conventional classroom teaching.
3. Case study
The present study is concerned with examination of adoption of ICT and e-learning at nine institutions of the
state of Jammu and Kashmir offering postgraduate and undergraduate engineering programs in various branches of
engineering. Engineering curriculum in these institutions comprises of four components namely theory courses,
practical courses, seminar on contemporary topic and project work. Teaching and learning, topics of the theory
courses are taught traditional in the classrooms, experiments of practical courses are conducted in the laboratory
using relevant equipment under the supervision of teachers. Students prepare seminar paper under the guidance of
teachers and collaborate in groups to complete assigned project workin the laboratories. Students’ performance is
assessed separately on the basis of score obtained by them in written and practical tests.
409 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
3.1. Methodology
Based on the review of relevant research cited in section 2, two survey instruments were designed. The design of
the instruments went through different stages and pre-tests by 12eminent ICT professionals and educationists who
possessed well-versed knowledge of recent developments in technology and its worldwide application in education.
The survey questioners were redesigned by elimination, reclassification and by inclusion of new factors. The
purpose of first survey instrument was to gather information from faculty members about the existing use of basic
ICT tools in engineering classrooms and laboratories. The second instrument was used to gather information about
the use of web based training tools currently used by the faculty members. Respondents were asked to rate their
current usage of ICT tools (computer based training) and e-learning tools (web based training) using a 5-point rating
Likert scale ranging from 1=Never Used to 5=Extensive Used. The survey used paper-pencil Delphi method to
gather, organize and prioritize dominant factors. Two Delphi rounds were used. In the first round eminent experts
(Delphi panelists) redesigned the survey instrument and in the second round e-mails were send to 80 faculty
members to collect information about existing use of ICT in institutions of the state of Jammu and Kashmir. In total
50 responses were received. After initial analysis 2 responses from faculty members were found to be incomplete
and therefore, were dropped from the analysis bringing the number of responses to be analyzed to 48 with a
minimum of 5 responses from each institute.
The reliability of the survey instruments were measured by Cronbach’s alpha. The instruments had a very high
overall reliability, α=0.7965, and α=0.8053. The alpha coefficients for the sub-scales were also good, exceeding the
minimum threshold of 0.70 recommended in literature, thus indicating good internal consistency. The data was
analyzed with the help of Statistical Products and Service Solutions (SPSS) for calculating mean, standard
deviation, percentage, Cronbach’s alpha, etc.
3.2. Results
Respondents were well established academic members (12.50% professors, 16.67% associate professors, 43.75%
assistant professors and 27.08% lecturers) possessing respectable degrees (37.50% Ph. D holders, 52.08% Master
degree holders and 10.42% were Bachelor degree holders). The professional experience in engineering education
was less than 10 years for about 70% of respondents. More than 60% respondents were less than 40 years of age and
there were more males faculty members than female members. About 40% faculty members were not regular and
were engaged on contractual basis. Twenty five percent (25%) respondents were from electronics and
communication engineering, 16.67% from electric engineering, 14.58% from civil engineering, 10.42% from
mechanical engineering, and remaining were from other branches of engineering. About sixty two percent (62.50%)
respondents were from Kashmir region and remaining 37.50% respondents were from Jammu region.
Table 1. Adoption of ICT (Computer Based Training)
Components
(Computer Based Training)
Responses in Percentage (N=48)
Never
Used
Rarely
Used
Moderately
Used
Substantially
Used
Extensively
Used
1. Classroom Practice:
a) Presentations 22.92 18.75 33.33 14.58 10.42
b) e-books 47.92 22.92 12.50 12.50 4.17
c) Animations 54.17 25.00 12.50 6.25 2.08
d) Visualizations 52.08 18.75 18.75 6.25 4.17
e) Simulations and other tools 39.58 29.17 22.92 6.25 2.08
f) Engineering Software (CAD, CAM, CAE, etc.) 58.33 20.83 14.58 4.17 2.08
g) Demonstration 27.08 20.83 33.33 12.50 6.25
h) Provide e-content to students 12.50 22.92 33.33 18.75 12.50
Group Average 39.32 22.40 22.66 10.16 5.47
2. Laboratory Practice:
a) Visualized demonstrations 56.25 35.42 8.33 0.00 0.00
b) Simulations and other similar tools 6.25 4.17 10.42 33.33 45.83
c) Computer controlled Instruments 2.08 8.33 12.50 20.83 56.25
d) Engineering Software (CAD, CAM, CAE, etc.) 14.58 12.50 16.67 20.83 35.42
e) Virtual Instruments 100.00 0.00 0.00 0.00 0.00
Group Average 35.83 12.08 9.58 15.00 27.50
410 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
Components
(Computer Based Training)
Responses in Percentage (N=48)
Never
Used
Rarely
Used
Moderately
Used
Substantially
Used
Extensively
Used
3. Project Work:
a) Collaboration and communication 43.75 31.25 12.50 8.33 4.17
4. Seminar:
a) Presentations 4.17 4.17 2.08 12.50 77.08
b) e-resources 43.75 22.92 12.50 12.50 8.33
Group Average 23.96 13.54 7.29 12.50 42.71
5. Assessment:
a) Evaluation progress 56.25 33.33 2.08 8.33 0.00
b) Feedback track 75.00 16.67 4.17 2.08 2.08
Group Average 65.63 25.00 3.13 5.21 1.04
6. Management
a) Student record and conduct 68.75 22.92 8.33 0.00 0.00
b) Scheduling 77.08 14.58 8.33 0.00 0.00
Group Average 72.92 18.75 8.33 0.00 0.00
Average 47.53 18.35 10.20 8.57 15.34
Table 1 summarizes group and component-wise current practice of ICT by faculty members in engineering
education. The data is presented as percentage of use (varying from never used to extensively used) of each
component. Individual components of computer based training under examination are grouped in six groups namely
classroom practice, laboratory practice, project work, seminar, assessment and management. The group wise and
overall average use is also summarized. On an average 47.53% faculty never practiced ICT, 18.35% practiced ICT
rarely, 10.20% practiced ICT moderately, 8.57% practiced ICT substantially and 15.34% practiced ICT extensively
intheir teaching. It is clear that presently ICT is not used widely. However,to some extend its usage was moderately
practicedin seminar work, laboratory and classrooms. Usage of ICT for project work, management and assessment
was found to be extremely low. The current usage of ICT in seminar works was about 60% followed by engineering
laboratories where it was about 50% and classrooms where it was about 40%, considering moderate usage as
minimum acceptable standard. Figure 2 shows the present usage of individual components of ICT in engineering
education. Considering moderate usage as minimum acceptable standard, usage ofpresentations in seminar works,
computer controlled instruments and simulations in laboratories was about 90%. The usage of CAM/CAD/CAE
tools, presentations in classrooms and providing of e-content to students was about 70% and 60% respectively.
Further, usage of virtual instruments in laboratories, usage of ICT for scheduling, student record and conduct, and
usage in student assessment was found to be negligible.
Fig.1. Components (CBT) vs. present usage
Table 2 summarizes group and component-wise current practice of e-learning by faculty members in engineering
education. The data is presented as percentage of use (varying from never used to extensively used) of each
component. Individual components of web based training under examination are grouped in six groups namely
LMS, host e-resources, online interaction, collaboration and communication, assessment and encouragement. The
group wise and overall average usage is also summarized. On an average 83.26% faculty never practiced e-learning,
411 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
7.48% practiced e-learning rarely, 7.60% practiced e-learning moderately, 1.18% practiced e-learning substantially
and 0.49% practiced e-learning extensively in their teaching.
Table 2. Adoption of e-learning(Web Based Training)
Components
(Web Based Training)
Responses in Percentage (N=48)
Never
Used
Rarely
Used
Moderately
Used
Substantially
Used
Extensively
Used
1. Use any LMS, e-library, digital library, e-books 100.00 0.00 0.00 0.00 0.00
2. Host e-resources
a) Course material/notes 91.67 6.25 2.08 0.00 0.00
b) Lecture videos or presentations 93.75 4.17 2.08 0.00 0.00
c) Animations 93.75 4.17 2.08 0.00 0.00
d) Visualizations 93.75 4.17 2.08 0.00 0.00
e) Simulation or other similar videos 93.75 4.17 2.08 0.00 0.00
f) Lab demonstration videos 95.83 2.08 2.08 0.00 0.00
g) Other learning object 100.00 0.00 0.00 0.00 0.00
h) Course plan and/or schedule 100.00 0.00 0.00 0.00 0.00
i) Course FAQ 97.92 0.00 2.08 0.00 0.00
Group Average 95.60 2.78 1.62 0.00 0.00
3. Online interactive interaction
a) Video or audio classes 95.83 2.08 2.08 0.00 0.00
b) Virtual laboratory 97.92 2.08 0.00 0.00 0.00
Group Average 96.88 2.08 1.04 0.00 0.00
4. Collaboration & communication with students:
a) Seminar or project 81.25 6.25 12.50 0.00 0.00
b) Asynchronous 50.00 10.42 35.42 2.08 2.08
c) Synchronous 91.67 6.25 2.08 0.00 0.00
d) Social media connect with students 22.92 16.67 41.67 12.50 6.25
e) Student feedback 85.42 6.25 8.33 0.00 0.00
Group Average 66.25 9.17 20.00 2.92 1.67
5. Student assignment and assessment 87.50 8.33 2.08 2.08 0.00
6. Encourage students to:
a) Enrol to courses on websites like Edx, etc. 64.58 31.25 4.17 0.00 0.00
b) Collaborate with each other (off campus) 45.83 35.42 16.67 2.08 0.00
c) Use Internet for searching solutions 10.42 2.08 75.00 6.25 6.25
d) Use online simulations and other tools 79.17 20.83 0.00 0.00 0.00
e) Explore other web tools for learning 66.67 22.92 8.33 2.08 0.00
Group Average 53.33 22.50 20.83 2.08 1.25
Average 83.26 7.48 7.60 1.18 0.49
The results indicate that e-learning is not even used moderately, however, computed figures indicate that faculty
encourages students to use online learning modes and collaborate and communicate with students online to some
extent. No teachers uses any lecture management system as the institutions do not have any lecture management
system in place. E-resources are very rarely uploaded, and onlineinteraction and assessment is almost absent.
Fig.2. Components (WBT) vs. present usage
412 M. Tariq Banday et al. / Procedia - Social and Behavioral Sciences 123 ( 2014 ) 406 – 413
Figure 2 shows the present usage of individual component of e-learning. Teachers encourage students to use
Internet for searching solutions to problems, have established a moderate social media connection with students, and
to some extend maintain a moderate asynchronous communication with students. However, teachers neither develop
e-content nor upload course plan or page. They do not use LMS or social media for online delivery or collaboration.
4. Discussions
ICT and e-learning are implemented in engineering institutionsall over the world, however, the breadth and
depth of this implementation differs importantly between nations and across institutions despite its perceived need
and strong desire. These differences are much more in case of e-learning (web based learning) in which not only
diverse types of e-resources are made available but courses are also offered online and constructivist pedagogy can
be applied. ICT and e-learning can be employed to improve efficiency of engineering education whether offered
through traditional (based on positivism) or emerging approaches. Researcher works Pitchianet al. (2002) and
Sarangi(2004) have demonstrated that the required competencies for engineers as identified by ABET
(http://www.abet.org/) are enhanced by the use of e-learning. The surveyed institutions are at a disadvantage not
only because education is imparted using traditional pedagogy but also because ICT and e-learning are not
employed even moderately. E-learning is still in very early stage of adoption. Implementation of e-learning
particularly in developing countries faces diverse challenges (Mehra et al, 2007), (Andersson et al., 2009), (Klamma
et al., 2007) which are multidimensional and heterogeneous (Benchicou et al, 2010). They can be grouped in seven
major categories namely: a)personal or dispositional, b) learning style, c) instructional, d) situational, e)
organizational, f) content suitability, and, g) technological. Further, developing e-learning structures for engineering
education might pose unique challenges if the instructional material is not adequately designed to facilitate learning
at all levels as it has to deal with multiple levels of intelligence.Integration of technology is complex and influenced
byfactors that may not only differfrom institution to institution but may also have different priorities. Therefore, a
thorough study of critical successes factors (CSFs) in light of already recognized factors and known challenges must
be undertaken. This can help the implementers to frame ICT and e-learning policy for engineering education for the
state ofJammu and Kashmir.
Terjemahan
Penerapan
e-Learning dalam teknik pendidikan: suatu kerangka studi
Abstrak
Alat ICT yang memadai yang mendukung
pendidikan tradisional dan muncul rekayasa telah dikembangkan, namun, mereka
adopsi tidak sampai tanda di negara berkembang terutama karena kurangnya
fasilitas infrastruktur yang memadai dan kompeten sumber daya manusia selain
tantangan sosial-ekonomi, sosial-budaya, dan bahasa. Makalah ini deliberates
pada aplikasi e-learning dan praktek saat ini di pendidikan teknik. Ini laporan
hasil survei yang dilakukan untuk menguji adopsi ICT dan e-learning alat di
lembaga rekayasa dari negara bagian Jammu dan Kashmir. Hasil yang dibahas dalam
terang penelitian yang relevan untuk menyarankan rekomendasi untuk meningkatkan
e-learning implementasi dalam pendidikan teknik.
1.
E-learning dalam pendidikan teknik
Implementasi
ICT dalam pendidikan teknik melibatkan penggunaan ICT untuk pengiriman kelas
kuliah, demonstrasi dan melakukan percobaan laboratorium, kursus dan manajemen
kelas dan administrasi. Kelas mengajar dibantu oleh presentasi yang berisi
materi yang cukup, diagram sirkuit, diagram jaringan, proses diagram dan
diagram alur. Softcopy dari buku-buku yang ditentukan dalam silabus yang dapat
digunakan saat menyampaikan kuliah. Sambil menjelaskan rangkaian atau simulasi
program perangkat lunak dan compiler dapat digunakan di ruang kelas untuk lebih
baik pemahaman pelajaran. Animasi dan visualisasi dapat digunakan untuk
menunjukkan kerja dari komponen, fungsi dari rangkaian atau proses. Peralatan
ICT seperti visualizers, atau digital masih dan kamera video bisa dihubungkan
ke proyektor di ketiadaan visualizers untuk menunjukkan eksperimen di
laboratorium untuk menutupi seluruh kelas dalam satu pergi dan dengan demikian
menghemat waktu yang dinyatakan mungkin memerlukan pengulangan untuk setiap
kelompok siswa dari kelas tertentu. Software simulasi, desain engineering dan
evaluasi alat, alat pemetaan-pikiran misalnya Matlab, Mathematica, MathCad,
Octave, OrCAD, SPICE, AutoCAD, Solid Works, Inspirasi, MindManager, dll dapat
digunakan dalam laboratorium komputasi jaringan untuk menunjukkan dan percobaan
carryout yang dinyatakan bisa belum dilakukan di laboratorium hardware karena
tidak tersedianya instrumen atau komponen (s) atau relevan atau cukup karena
kendala waktu. Ada banyak alat-alat berbasis komputer seperti yang mendukung
laboratorium rekayasa untuk setiap cabang rekayasa. Berbagai percobaan di
laboratorium rekayasa mempekerjakan penggunaan langsung atau tidak langsung komputer
karena banyak peralatan laboratorium yang saat ini dioperasikan melalui
beberapa antarmuka berbasis komputer. E-learning dapat lebih meningkatkan
pendidikan teknik dengan menggunakan e-sumber, kursus online, blended learning,
manajemen sistem kuliah, dan komunikasi dan kolaborasi alat-alat lain. Sebuah
sistem manajemen perkuliahan khas memiliki fasilitas untuk pengiriman konten,
e-mail, tugas / latihan, forum, milis, ujian, penilaian diri, survei, kerja
kelompok, chatting, kalender, FAQ, wiki, blog, glosarium, konferensi video,
notebook, papan tulis, jalur belajar, portofolio siswa, podcast, pelacakan
mahasiswa, dan podcast. Dalam tidak adanya manajemen kuliah Team sistem
penampil, MS Lync atau lainnya alat serupa dapat digunakan untuk memberikan
kuliah singkat online, simulasi, dll alat tersebut sering memiliki putih secara
online board untuk narasi selama pengiriman. Alat web lain seperti SkyDrive, MS
Office 365 untuk pendidikan, Google Docs, dapat digunakan untuk bekerjasama
pada makalah seminar, laporan proyek, percobaan write-up, online alat dan
Jaringan Sosial website seperti Google Talk, Skype, dapat digunakan untuk AV
dan teks Petunjuk, berbagi berita dan pemberitahuan yang relevan. Sebuah studi
baru-baru ini (Banday, 2012) telah melaporkan dampak positif dari penggunaan alat
ini pada hasil pembelajaran di beberapa program rekayasa elektronik.
2. praktik
Saat ICT dan e-learning dalam pendidikan teknik
Rekayasa
pendidikan yang berbasis pada ilmu pengetahuan dan matematika membuatnya secara
signifikan berbeda dari yang lain disiplin. Mata pelajaran ini secara
tradisional sulit untuk mengajar secara online karena kebutuhan untuk
laboratorium dan persamaan manipulasi. Tapi kemajuan teknologi selama
bertahun-tahun telah diizinkan representasi dari struktur yang kompleks dan
benda-benda oleh komputer. Dalam e-learning sumber dari jenis yang beragam yang
dibuat tersedia untuk peserta didik untuk di-download atau secara online studi.
Salah satu jenis seperti sumber daya konten digital atau digital seperti
catatan kuliah, tutorial, e-buku, dll tersedia untuk didownload atau belajar
secara online menggunakan beberapa sistem online seperti OpenCourseWare
Consortium (http://www.ocwconsortium.org), dan proyek Open University OpenLearn
(http://openlearn.open.ac.uk/). Kedua jenis sumber daya online yang objek
seperti simulasi, pelajaran terstruktur, animasi, video, seperti belajar MERLOT
(http://www.merlot.org) dan cangkir besar (http: /s/www.jorum.ac.uk/). Jenis
ketiga adalah multi-user, dinamis dan lingkungan pembelajaran interaktif
memungkinkan pembelajaran yang konstruktif, di mana pelajar belajar dengan
melakukan seperti Finesse (Michaelson, 2003) dan WiFi Virtual Laboratory
(Allison et al., 2008). Penelitian terbaru bekerja seperti Potkonjak dkk.
(2010), Jara dkk. (2011), Rojko, (2010), dan Vivar, (2008) memiliki menunjukkan
bahwa beberapa lembaga telah menciptakan laboratorium virtual dan terpencil
mereka sendiri untuk mendukung belajar seumur hidup dan kegiatan belajar siswa
otonom 'dalam berbagai disiplin ilmu termasuk elektronik dan mikroelektronika, elektronika
daya dan drive listrik, kimia, fisika, dan kontrol dan otomatisasi. Virtual
Learning Lingkungan (VLE) selain mendukung pengiriman online konten juga
mendukung e-mail, newsgroup, dan buletin papan. VLEs ini berkembang menjadi
lingkungan belajar yang dikelola (MLE) yang juga mendukung pemberitahuan-papan,
chatting kamar, penilaian online, papan tulis, dan alat-alat web lainnya. Baik
komersial dan open source VLEs dan MLEs seperti Moodle (http://moodle.org) (LMS
paling populer) (Llam, 2011), WebCT / Blackboard (http://www.blackboard.com),
Ilias (http://www.ilias.de), .LRN (http://www.dotlrn.org), Sakai (http://www.sakaiproject.org/),
Claroline (http://www.claroline.net) yang digunakan dalam pendidikan teknik.
Web diaktifkan proyek pembelajaran seumur hidup seperti nQuire
(http://www.nquire.org.uk/) dan LIFE (http: // lifeslc. org / penelitian /
reports.html) mendukung saling melengkapi dari kedua pembelajaran formal dan
informal. Selain penciptaan teknologi pembelajaran inovatif, web memungkinkan
lembaga pendidikan untuk berbagi ajaran mereka keahlian dan sumber belajar
secara global. Berbagai inisiatif untuk laboratorium secara online misalnya
LabShare (http://www.labshare.edu.au/home), WebLab-Deusto
(https://www.weblab.deusto.es/web), iLab Bersama Arsitektur (http://icampus.mit.edu/projects/iLabs.shtml),
Visir (Gustavsson et al., 2009), Ocelot (http://ocelot.ow2.org), Lila (http:
//www.lila-project.org/) telah muncul untuk memberikan berbagi laboratorium
virtual dan terpencil di antara universitas yang berbeda. Dengan tujuan untuk
meningkatkan kualitas pendidikan teknik di India dengan menyediakan gratis courseware
online, Program Nasional Teknologi Ditingkatkan Learning (NPTEL)
(http://nptel.iitm.ac.in/) telah diprakarsai oleh lembaga terkemuka rekayasa
nasional India. Saat ini, NPTEL menyediakan e-learning melalui web dan kursus
video dalam rekayasa, ilmu pengetahuan dan humaniora. Berbagai inisiatif
seperti Khan Academy (http://www.khanacademy. org), Coursera
(https://www.coursera.org/) dan EDX (http://www.edxonline.org) untuk
menciptakan platform global yang bebas untuk mengembangkan dan menyebarkan web
diaktifkan sumber belajar berjalan dengan sukses. Menurut Manchester Institute
of Technology, co-inisiator dari EDX, 10.000 siswa telah lulus pemeriksaan
paruh ke kursus online bernama "Pengantar Sirkuit dan Elektronik"
yang 120.000 pendaftaran dibuat Maret 2012.
Selain
upaya di tingkat kelembagaan, nasional dan internasional, individu sangat aktif
dalam mengembangkan belajar objek untuk pendidikan teknik. (Ebner et al., 2002)
digunakan sistem manajemen kursus berbasis web di Struktur concreate dan
menemukan bahwa itu memberi siswa insignt jauh ke dalam struktur yang lebih
kompleks dari teknik sipil. Haep dkk. (2004) yang menggunakan TIK untuk
penilaian siswa menemukan bahwa TIK dapat memfasilitasi aspek terbaik dari
penilaian melalui tes berbasis web untuk latihan dan penilaian diri, penilaian
kerja kelompok. Ribeiro et al. (2005) dilakukan evaluasi siswa dari
pembelajaran berbasis masalah (PBL) implementasi dalam kurikulum rekayasa
pascasarjana menggunakan desain kualitatif dan kolaboratif. Disimpulkan bahwa
pendekatan ini sangat memuaskan karena dipromosikan akuisisi pengetahuan dan
mengembangkan keterampilan dan sikap, seperti kerja sama tim dan komunikasi
keterampilan dan menghormati ide-ide yang berbeda. Cagiltay (2008) mempelajari
hubungan antara gaya belajar teknik siswa dan kinerja mereka. Ditemukan bahwa
assimilators dan convergers dilakukan lebih baik daripada divergers dan accommodators
dan perbedaan kinerja antara assimilators dan divergers signifikan secara
statistik. Dulu juga menemukan bahwa teori gaya belajar adalah alat yang
potensial untuk membimbing desain dan perbaikan program dan membantu siswa
untuk meningkatkan kinerja masing-masing. Smaill (2006) menggunakan alat
berbasis web yang digunakan untuk keterampilan praktek dan penilaian sumatif di
bidang teknik listrik yang disampaikan tugas individual, menandai siswa tanggapan,
pasokan umpan balik yang cepat, dan log aktivitas siswa. Dilaporkan bahwa
perangkat lunak membantu instruktur mereka untuk mengelola beban kerja terlepas
dari meningkatnya ukuran kelas dan belajar siswa telah ditingkatkan daripada dikompromikan.
Para siswa menemukan perangkat lunak mudah digunakan dan berpendapat bahwa itu
membantu mereka meningkatkan mereka keterampilan dan pemahaman. (Wen et al.,
2006) mengembangkan sebuah aplikasi kantilever balok percontohan berbasis
kelompok secara online menggunakan audio lag rendah dan model tiga dimensi
interaktif lingkungan padat saja mekanika belajar.
Menggunakan
sistem ini peserta didik mampu untuk memanipulasi model tiga dimensi, mengubah
sudut pandang dan menerapkan Pasukan di berbagai lokasi dengan menggunakan
browser. (Ray et al., 2012) mengembangkan Virtual Proteomika Lab yang
menunjukkan teknik proteomik yang berbeda, termasuk gel dasar dan lanjutan dan
pemisahan protein MS-based dan teknik identifikasi, alat bioinformatika dan
metode docking molekular, dan aplikasi mereka di berbagai sampel biologis. Zhai
et al. (2012) dirancang laboratorium secara online listrik yang memungkinkan
otonom, interaktif dan pembelajaran kolaboratif eksperimen teknik listrik.
(Banday, 2012) telah mengidentifikasi empat kelompok kekurangan dalam proses
belajar mengajar sistem konvensional diikuti untuk pendidikan teknik. Ini
adalah:
i)
interaksi
siswa-guru yang tidak memadai,
ii)
mengajar
yang kompleks dan pembelajaran,
iii)
kehilangan
sinkronisasi,
iv)
lemah
kolaborasi dan komunikasi,
v)
manajemen
siswa sulit.
Dalam
studi ini, bervariasi alat e-learning diuji untuk melengkapi mengajar di kelas
rekayasa elektronik dan laboratorium. Studi ini menunjukkan bahwa tidak hanya
belajar tetapi juga kinerja siswa dalam pemeriksaan jangka end berlimpah
ditingkatkan dengan menggunakan e-learning alat dalam pendidikan teknik.
Penelitian lebih lanjut mengungkapkan bahwa sebagian besar siswa percaya bahwa
penggunaan pembelajaran alat seperti simulasi, animasi, dan demonstrasi virtual
di laboratorium yang lebih produktif daripada pengajaran di kelas konvensional.
Studi
Kasus 3. Penelitian ini berkaitan dengan pemeriksaan adopsi ICT dan e-learning
di sembilan lembaga dari negara bagian Jammu dan Kashmir menawarkan program
pascasarjana teknik dan sarjana di berbagai cabang rekayasa. Rekayasa kurikulum
di lembaga-lembaga ini terdiri dari empat komponen yaitu teori kursus, kursus
praktis, seminar tentang topik kontemporer dan pekerjaan proyek. Mengajar dan
belajar, topik teori pelajaran diajarkan tradisional di kelas, eksperimen
kursus praktis yang dilakukan di laboratorium menggunakan peralatan yang
relevan di bawah pengawasan guru. Siswa mempersiapkan kertas seminar di bawah
bimbingan guru dan berkolaborasi dalam kelompok untuk menyelesaikan ditugaskan
pekerjaan proyek di laboratorium. Kinerja siswa adalah dinilai secara terpisah
atas dasar nilai yang diperoleh oleh mereka dalam tes tertulis dan praktis.
3.1.
Metodologi
Berdasarkan
penelaahan dari penelitian yang relevan dikutip dalam bagian 2, dua instrumen
survei yang dirancang. Desain instrumen melewati berbagai tahap dan pra-tes
oleh 12 profesional ICT terkemuka dan pendidik yang memiliki pengetahuan
berpengalaman dari perkembangan terbaru dalam teknologi dan aplikasi di seluruh
dunia dalam pendidikan. Kuesioner survei yang didesain ulang oleh eliminasi,
reklasifikasi dan dengan masuknya faktor baru.
Tujuan dari instrumen survei pertama adalah untuk mengumpulkan informasi
dari anggota fakultas tentang penggunaan yang ada dasar Alat TIK di kelas
teknik dan laboratorium. Instrumen kedua digunakan untuk mengumpulkan informasi
tentang penggunaan alat-alat pelatihan berbasis web saat ini digunakan oleh
anggota fakultas. Responden diminta untuk menilai mereka penggunaan saat ini
alat ICT (pelatihan berbasis komputer) dan e-learning alat (pelatihan berbasis
web) menggunakan rating 5 poin Skala Likert mulai dari 1 = Tidak pernah
Digunakan untuk 5 = luas Digunakan. Survei menggunakan kertas-pensil metode
Delphi untuk mengumpulkan, mengatur dan memprioritaskan faktor dominan. Dua
putaran Delphi digunakan. Pada bagian pertama ahli terkemuka putaran (Delphi
panelis) didesain ulang instrumen survei dan di kedua e-mail putaran yang
mengirim ke 80 fakultas anggota untuk mengumpulkan informasi tentang penggunaan
ICT yang ada di lembaga-lembaga negara Jammu dan Kashmir. Secara keseluruhan 50
tanggapan diterima. Setelah analisis awal 2 tanggapan dari anggota fakultas
yang ditemukan tidak lengkap dan karena itu, dijatuhkan dari analisis membawa
jumlah tanggapan yang akan dianalisis untuk 48 dengan minimal 5 tanggapan dari
masing-masing lembaga.
Keandalan
instrumen survei diukur dengan alpha Cronbach. Instrumen memiliki sangat tinggi
keandalan keseluruhan, α = 0,7965, dan α = 0,8053. Koefisien alpha untuk
sub-skala yang juga baik, melebihi ambang minimal 0.70 direkomendasikan dalam
literatur, yang mengindikasikan konsistensi internal yang baik. Data itu dianalisis
dengan bantuan statistik Produk dan Layanan Solusi (SPSS) untuk menghitung
rata-rata, standar deviasi, persentase, alpha Cronbach, dll
3.2.
Hasil
Responden
mapan anggota akademik (12,50% profesor, 16,67% asosiasi profesor, 43,75% asisten
profesor dan 27,08% dosen) memiliki derajat terhormat (pemegang 37,50% Ph. D,
52,08% Guru pemegang gelar dan 10,42% adalah pemegang gelar Sarjana).
Pengalaman profesional di bidang pendidikan teknik kurang dari 10 tahun sekitar
70% responden. Lebih dari 60% responden kurang dari 40 tahun dan ada laki-laki
lebih anggota fakultas dari anggota perempuan. Sekitar 40 anggota fakultas%
tidak teratur dan terlibat secara kontraktual. Dua puluh lima persen (25%)
responden dari elektronik dan rekayasa komunikasi, 16,67% dari rekayasa
listrik, 14,58% dari teknik sipil, 10,42% dari teknik mesin, dan sisa berasal
dari cabang lain dari rekayasa. Sekitar enam puluh dua persen (62,50%) responden
dari wilayah Kashmir dan sisa 37,50% responden dari wilayah Jammu.
Tabel 1
merangkum kelompok dan komponen-bijaksana praktek saat TIK oleh anggota
fakultas teknik pendidikan. Data disajikan sebagai persentase penggunaan
(bervariasi dari tidak pernah digunakan secara ekstensif digunakan) masing-masing
komponen. Masing-masing komponen dari pelatihan berbasis komputer di bawah
pemeriksaan dikelompokkan dalam enam kelompok yaitu praktek kelas, praktek
laboratorium, pekerjaan proyek, seminar, penilaian dan manajemen. Kelompok
orang bijak dan penggunaan rata-rata keseluruhan juga diringkas. Pada 47,53%
fakultas rata tidak pernah dipraktekkan ICT, 18,35% dipraktekkan ICT jarang,
10,20% dipraktekkan ICT cukup, 8,57% dipraktekkan ICT secara substansial dan
15,34% dipraktekkan ICT secara ekstensif dalam mengajar mereka. Jelas bahwa
saat ICT tidak digunakan secara luas. Namun, untuk beberapa memperpanjang
penggunaannya adalah cukup dipraktekkan dalam pekerjaan seminar, laboratorium
dan ruang kelas. Penggunaan ICT untuk pekerjaan proyek, manajemen dan penilaian
ditemukan menjadi sangat rendah. Penggunaan saat ini dari ICT dalam karya
seminar adalah sekitar 60% diikuti oleh rekayasa laboratorium di mana itu
sekitar 50% dan ruang kelas di mana itu sekitar 40%, mengingat penggunaan
moderat sebagai minimum diterima standar. Gambar 2 menunjukkan penggunaan kini
masing-masing komponen ICT dalam rekayasa pendidikan. Mengingat penggunaan
moderat sebagai standar minimum yang dapat diterima, penggunaan presentasi
dalam karya seminar, instrumen yang dikendalikan komputer dan simulasi di
laboratorium adalah sekitar 90%. Penggunaan CAM / CAD / CAE , presentasi di
ruang kelas dan menyediakan e-konten untuk siswa adalah sekitar 70% dan 60%
masing-masing. Selanjutnya, penggunaan instrumen virtual di laboratorium,
penggunaan ICT untuk penjadwalan, catatan siswa dan perilaku, dan penggunaan
dalam penilaian siswa ditemukan diabaikan.
Gambar.
1. Tabel 2 merangkum kelompok dan komponen-bijaksana praktek saat ini
e-learning oleh anggota fakultas teknik pendidikan. Data disajikan sebagai
persentase penggunaan (bervariasi dari tidak pernah digunakan secara ekstensif
digunakan) masing-masing komponen. Masing-masing komponen dari pelatihan
berbasis web di bawah pemeriksaan dikelompokkan dalam enam kelompok yaitu LMS,
tuan e-sumber, interaksi online, kolaborasi dan komunikasi, penilaian dan
dorongan. The Kelompok bijaksana dan secara keseluruhan penggunaan rata-rata
juga diringkas. Pada 83,26% fakultas rata tidak pernah dipraktekkan e-learning,
7.48% dipraktekkan e-learning jarang, 7.60% dipraktekkan e-learning cukup,
1,18% dipraktekkan e-learning secara substansial dan 0,49% dipraktekkan
e-learning secara luas dalam pengajaran mereka. Hasil penelitian menunjukkan
bahwa e-learning tidak bahkan digunakan cukup, namun, angka dihitung menunjukkan
bahwa fakultas mendorong siswa untuk menggunakan mode pembelajaran online dan
berkolaborasi dan berkomunikasi dengan siswa secara online ke beberapa batas.
Tidak ada guru menggunakan sistem manajemen perkuliahan sebagai lembaga tidak
memiliki manajemen kuliah sistem di tempat. E-sumber yang sangat jarang upload,
dan interaksi online dan penilaian hampir tidak ada.
Gambar 2
menunjukkan penggunaan hadir komponen individual dari e-learning. Guru
mendorong siswa untuk menggunakan Internet untuk mencari solusi untuk masalah,
telah membentuk koneksi sosial media moderat dengan siswa, dan untuk beberapa
memperpanjang mempertahankan komunikasi asynchronous moderat dengan siswa.
Namun, guru tidak mengembangkan e-konten atau meng-upload rencana kursus atau
halaman. Mereka tidak menggunakan LMS atau media sosial untuk pengiriman online
atau kolaborasi.
4.
Diskusi
ICT dan
e-learning diimplementasikan dalam lembaga rekayasa di seluruh dunia, namun,
luas dan kedalaman implementasi ini berbeda penting antara bangsa-bangsa dan
seluruh institusi meskipun kebutuhan yang dirasakan dan keinginan yang kuat.
Perbedaan-perbedaan ini jauh lebih dalam kasus e-learning (pembelajaran
berbasis web) yang tidak hanya beragam jenis e-sumber daya yang tersedia tetapi
program juga ditawarkan secara online dan pedagogi konstruktivis dapat diterapkan.
ICT dan e-learning dapat digunakan untuk meningkatkan efisiensi pendidikan
teknik apakah yang ditawarkan melalui pendekatan tradisional (berdasarkan
positivisme) atau muncul. Peneliti bekerja Pitchian dkk. (2002) dan Sarangi
(2004) telah menunjukkan bahwa kompetensi yang diperlukan untuk insinyur
seperti yang diidentifikasi oleh ABET (http://www.abet.org/) ditingkatkan
dengan menggunakan e-learning. Lembaga yang disurvei berada pada posisi yang
kurang menguntungkan tidak hanya karena pendidikan disampaikan menggunakan
pedagogi tradisional tetapi juga karena ICT dan e-learning tidak dipekerjakan
bahkan cukup. E-learning masih dalam tahap sangat awal adopsi. Penerapan
e-learning khususnya di negara-negara berkembang menghadapi beragam tantangan
(Mehra et al, 2007), (Andersson et al., 2009), (Klamma et al., 2007) yang
multidimensi dan heterogen (Benchicou et al, 2010). Mereka dapat dikelompokkan
dalam tujuh kategori utama yaitu: a) pribadi atau disposisional, b) gaya
belajar, c) instruksional, d) situasional, e) organisasi, f) kesesuaian isi,
dan, g) teknologi. Selanjutnya, mengembangkan struktur e-learning untuk
engineering pendidikan mungkin menimbulkan tantangan unik jika materi
pembelajaran tidak memadai dirancang untuk memfasilitasi pembelajaran di semua
tingkatan karena harus berurusan dengan berbagai tingkat kecerdasan. Integrasi
teknologi yang kompleks dan dipengaruhi oleh faktor-faktor yang mungkin tidak
hanya berbeda dari lembaga ke lembaga tetapi juga mungkin memiliki prioritas
yang berbeda. Oleh karena itu, tantangan studi menyeluruh tentang faktor
keberhasilan kritis (CSF) dalam terang faktor yang sudah diakui dan dikenal
harus dilakukan. Hal ini dapat membantu para pelaksana untuk membingkai ICT dan
e-learning kebijakan untuk pendidikan teknik untuk negara bagian Jammu dan
Kashmir.
ANALISIS JURNAL
Dalam jurnal ini menjelaskan tentang
perkembangan teknologi terhadap teknis pendidikan yang saling berkaitan saat
ini. Berfokus kepada pendidikan konvensional yang dinilai sudah tidak efektif
lagi dan dianggap sudah dapat menerapkan teknologi dalam perkembangan
pendidikan terkini. Salah satu harapan
dari penerapan teknologi komunikasi dalam pendidikan yaitu memberi kemudahan
tertentu.
Empat kelompok kekurangan dalam
proses belajar mengajar sistem konvensional diikuti untuk pendidikan teknik.
Ini adalah:
i)
interaksi
siswa-guru yang tidak memadai,
ii)
mengajar
yang kompleks dan pembelajaran,
iii)
kehilangan
sinkronisasi,
iv)
lemah
kolaborasi dan komunikasi,
v)
manajemen
siswa sulit.
Selain itu jurnal ini
dibuat untuk menguji adopsi ICT dan e-learning alat di lembaga rekayasa dari
negara bagian Jammu dan Kashmir. Yang menjadi responden dalam jurnal ini yaitu
profesor, asisten profesor, dan doesn.
Tidak ada komentar:
Posting Komentar